

本課程適用「產業新尖兵試辦計畫」補助

【產業新尖兵·青年全額補助】 智慧物聯網 FAE 工程師養成班

招生簡章

【課程簡介】

我國政府積極推動物聯網(IoT)、人工智慧(AI)以及5G等數位技術發展,根據國發會報告,預估未來3年通訊暨物聯網裝置與設備業新增人力需求最多,平均每年增加4,933人,加速帶動物聯網的發展及人才需求。

本課程特邀產、學、研專家擔任講師,希望帶領學員學習有關物聯網基礎知識,並透過實務應用經驗的分享傳承、專題實作演練等,逐步累積學員具備物聯網相關實務技能及專業人才所需之核心職能,協助學員順利銜接物聯網產業就業。

結訓後可從事

物聯網FAE工程師、物聯網應用工程師、物聯網產品工程師、物聯網產品應用工程師...等。

【適合對象】:

- 1. 學歷大學(含)以上,曾有撰寫電腦程式語言經驗者為佳,不熟悉亦可。
- 2. 15至29歲本國籍待業青年,培訓期間不得具勞工保險(不含訓字保)、就業保險身分。另曾參加勞動部勞動力發展署、分署及各直轄市、縣(市)政府依失業者職業訓練實施基準辦理之職前訓練,於結訓後180日內,不得參加本訓練課程。

「產業新尖兵試辦計畫」官方網站網址:<u>https://elite.taiwanjobs.gov.tw/</u>

【課程目標】

建構學員對物聯網(IoT)有基本概念及實務應用能力,期能輔導進入產業就業,成為FAE工程師(Field Application Engineer),擔任研發工程師與客戶間的橋樑,提供技術方面與產品導入客戶端的支援,確保產品符合客戶需求及進度完成等。

【課程特色】

- 1. 為累積學員實務經驗,本課程邀請產、學、研界專家擔任講師,帶領學員學習有關物聯網 知識及實務應用的經驗傳承。
- 2. 為協助學員銜接產業就業,本課程安排產業知識與通識學科(例如工研院技術案例與產業 趨勢)、物聯網工程師認證(EPCIE)模擬練習、專題實作、專題影片製作、成果發表會與媒 合會等,以期累積學員核心技能,為學員做好求職的準備,提高就業競爭力。

【課程大綱】

識與通詞	战學科30小時,專業學科90小時,術科204小時,其他時數6小時,	合計330小時
	本學科規劃「產業知識與通識學科」及「核心專業學科」。「產業	業知識與通識
	學科」目的是讓學員瞭解物聯網產業概況、課程規劃介紹,以及傳授	愛員 求職密
	技等。「核心專業學科」旨在幫助學員建立物聯網基本概念,讓學員	員結合理論與
	實務,逐步掌握物聯網知識應用。課程設計安排上機實作,感知層	學習資料蒐集
說明	並進行感測實驗資料的處理,網路層學習各種不同通訊範圍與傳轉	喻速率的無線
	通訊網路,應用層學習人工智慧與雲端大數據分析資料。另外,本	課程藉由案例
	說明及雙向交流,讓學員在最短時間內瞭解物聯網實務技術內涵與	趨勢,輔導協
	助取得專業證照,期能為學員求職履歷加分,提高面試媒合機會	0
產業	- 課程規劃核心理念介紹	קים בו פיונונו באן כי ן
知識	- 產業發展趨勢與需求	
與通	- 培訓主軸與產業技術對應關係	
識學	- EPCIE物聯網工程師認證介紹	
科(30	- 意見與回饋	
小時)	● 工研院智慧物聯網技術案例-車聯網(3小時)	徐志偉老師
	- 車聯網簡介與國際發展趨勢	
	- 車聯網關鍵應用與應用場域	
	- 未來車聯網發展趨勢-聯網自駕車	
	- 工研院聯網自駕車案例分享與綜合討論	÷++++++++++++++++++++++++++++++++++++
	• • •	割文雄老師
	' 熟情」和'使命」) - 找出、強化和推廣自我品牌	
	一、龙光、流化和排房日本品牌	
		謝文雄老師
	● 求職密技(含撰寫履歷與面試技巧)(9小時)	謝文雄老師
		謝文雄老師
	說明 產知與識 科(30	學科」目的是讓學員瞭解物聯網產業概況、課程規劃介紹,以及傳播技等。「核心專業學科」旨在幫助學員建立物聯網基本概念,讓學員實務,逐步掌握物聯網知識應用。課程設計安排上機實作,感知層並進行感測實驗資料的處理,網路層學習各種不同通訊範圍與傳輸通訊網路,應用層學習人工智慧與雲端大數據分析資料。另外,本說明及雙向交流,讓學員在最短時間內瞭解物聯網實務技術內涵與助取得專業證照,期能為學員求職履歷加分,提高面試媒合機會物聯網概論與課程規劃介紹(3小時) - 課程規劃核心理念介紹 - 產業發展趨勢與需求 - 培訓主軸與產業技術對應關係 - EPCIE物聯網工程師認證介紹 - 意見與回饋 小時) - 工研院智慧物聯網技術案例-車聯網(3小時) - 車聯網簡介與國際發展趨勢 - 車聯網關鍵應用與應用場域 - 未來車聯網發展趨勢-聯網自駕車

		- 求職面談別的华備的投資- 求職面談過程/結束後和遠距面試的注意事項	
		事題影片製作技巧(12小時)	何健鵬老師
		事 場所 (12 が 的) 影片 製作 介紹	
		- Openshot 軟體介面	
		- 視訊處理技術	
		- 音軌處理技術	
		- 影片字幕練習	
核心	○事 ●	Python 程式設計 (30小時)	蘇釗民老師
業學	學科	- 程式語言簡介	陳桂芬老師
(90)/J\	- Python 開發環境介紹	
時	寺)	- 變數	
		- 資料型態	
		- 輸入與輸出	
		- 運算式	
		- 單向判斷式 (if)	
		- 雙向判斷式 (ifelse)	
		- 多向判斷式 (ifelifelse)	
		- for迴圈	
		- Python Array 一維陣列介紹	
		- 巢狀for迴圈	
		- Python Array 二維陣列介紹	
		- While迴圈	
		- Python 套件安裝與應用	
		Python 套件進階應用	
	•	人工智慧-深度學習概論(30小時)	楊仁魁老師
		- 神經網路基礎	
		- 訓練神經網路的流程	
		- 序列模型與密集神經網路	
		- 卷積神經網路 (CNN)	
		- 卷積層 (Convolutional Layer)	
		- 池化層 (Pooling Layer)	
		- 最大池化MaxPooling2D	
		一 最久池にMaxF00iling2D 平均池化AveragePooling2D	
		- 平均池にAverageroomig2D- 降維方式展平層 (Flatten)、密集層 (Dense Layer)、丟	
		- 阵艇刀以成下盾 (Flatterry、岔未僧 (Defise Layer)、玄	

- 物聯網簡介 蕭水樹老師		
 文件資料預處理 Text Preprocessing 結果與討論 ◆ 物聯網認證實務-EPCIE物聯網工程師認證(30小時) - 物聯網解介 - 物聯網架構 - 物聯網感知層技術 (1) 無線射頻識別技術 (2) 感測器介紹 (3) 感測器硬體介紹 (4) 感測器感測結構改良 (5) 整合型感測器介紹 - 物聯網網路層技術 (1) 無線感測器網路介紹 (2) 感測器平台系統概念 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論 		
- 結果與討論 ● 物聯網認證實務-EPCIE物聯網工程師認證(30小時) - 物聯網簡介 - 物聯網感共構 - 物聯網感知層技術 (1) 無線射頻識別技術 (2) 感測器介紹 (3) 感測器硬體介紹 (4) 感測器感測結構改良 (5) 整合型感測器介紹 - 物聯網網路層技術 (1) 無線感測器網路介紹 (2) 感測器平台系統概念 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論		
● 物聯網認證實務-EPCIE物聯網工程師認證(30小時) - 物聯網簡介 - 物聯網架構 - 物聯網感知層技術 (1) 無線射頻識別技術 (2) 感測器硬體介紹 (3) 感測器硬體介紹 (4) 感測器感測結構改良 (5) 整合型感測器介紹 - 物聯網網路層技術 (1) 無線感測器網路介紹 (2) 感測器平台系統概念 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論	xt Preprocessing	
 物聯網簡介 物聯網架構 物聯網感知層技術 (1)無線射頻識別技術 (2)感測器介紹 (3)感測器硬體介紹 (4)感測器感測結構改良 (5)整合型感測器介紹 一物聯網網路層技術 (1)無線感測器網路介紹 (2)感測器平台系統概念 (3)影響感測器網路設計因素 (4)TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 物聯網網路層技術 (1) EPCglobal框架概論 		
 物聯網架構 物聯網感知層技術 (1)無線射頻識別技術 (2)感測器介紹 (3)感測器硬體介紹 (4)感測器感測結構改良 (5)整合型感測器介紹 物聯網網路層技術 (1)無線感測器網路介紹 (2)感測器平台系統概念 (3)影響感測器網路設計因素 (4)TinyOS作業系統介紹 (5) nesC環境的程式設計概念 物聯網網路層技術 (1) EPCglobal框架概論 	勿聯網工程師認證(30/	彭永新老師
一物聯網感知層技術		蕭水樹老師
(1) 無線射頻識別技術 (2) 感測器介紹 (3) 感測器硬體介紹 (4) 感測器感測結構改良 (5) 整合型感測器介紹 - 物聯網網路層技術 (1) 無線感測器網路介紹 (2) 感測器平台系統概念 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論		何健鵬老師
(2) 感測器介紹 (3) 感測器硬體介紹 (4) 感測器感測結構改良 (5) 整合型感測器介紹 - 物聯網網路層技術 (1) 無線感測器網路介紹 (2) 感測器平台系統概念 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論		陳桂芬老師
(3) 感測器硬體介紹 (4) 感測器感測結構改良 (5) 整合型感測器介紹 - 物聯網網路層技術 (1) 無線感測器網路介紹 (2) 感測器平台系統概念 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論	術	
(4) 感測器感測結構改良 (5) 整合型感測器介紹 - 物聯網網路層技術 (1) 無線感測器網路介紹 (2) 感測器平台系統概念 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論		
(5) 整合型感測器介紹 - 物聯網網路層技術 (1) 無線感測器網路介紹 (2) 感測器平台系統概念 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論		
- 物聯網網路層技術 (1) 無線感測器網路介紹 (2) 感測器平台系統概念 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論	改良	
(1) 無線感測器網路介紹 (2) 感測器平台系統概念 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論	紹	
(2) 感測器平台系統概念 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論		
 (3) 影響感測器網路設計因素 (4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 物聯網網路層技術 (1) EPCglobal框架概論 	介紹	
(4) TinyOS作業系統介紹 (5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論	概念	
(5) nesC 環境的程式設計概念 - 物聯網網路層技術 (1) EPCglobal框架概論	設計因素	
- 物聯網網路層技術 (1) EPCglobal框架概論	介紹	
(1) EPCglobal框架概論	弌設計概念	
(2) FPCaloahl網路架構元件	既論	
(2) El eglodolmapholiti	架構元件	
(3) Identify · Capture · Exchange	ıre · Exchange	
- EPCIE - 物聯網工程師認證考試模擬練習	師認證考試模擬練習	
本課程聚焦在專題實作,讓學員在實作過程中逐步熟悉並累積物聯網相關實務。	員在實作過程中逐步	悉並累積物聯網相關實務
大能,培養具備物聯網專業人員之核心職能。 科	、員之核心職能。	
(210 — Python 程式設計實習 (30小時) 魏岑峰老師	30小時)	魏岑峰老師
實作與 – Python 操作環境與使用 蘇釗民老師	使用	蘇釗民老師
專題 – Microbit 控制板Hello World – Python輸入與輸出實作 陳桂芬老師	ello World – Python	與輸出實作 陳桂芬老師
(210 _ Microbit 控制板+ 鋼琴擴充板 - Python輸入與輸出實	鋼琴擴充板 – Python	入與輸出實
小時) 作		
- Microbit 控制板陣列 LED 控制 - Python判斷式實作	列 LED 控制 - Pytho	判斷式實作
- Microbit 控制板加速度計控制 - Python多向判斷式實	速度計控制 - Python	可判斷式實
作		
- Microbit 控制板電子羅盤控制 - Python多向判斷式實	子羅盤控制 - Python	句判斷式實

作

- Microbit 控制板 LED 箭頭控制 -Python陣列實作
- Microbit 控制板 python while 迴圈
- Python 視覺化工具
- Python 網路爬蟲套件安裝與應用實作
- Python Pygame套件安裝與應用實作
- Python PIL套件安裝與應用實作
- Android APP 技術實務(30小時)
 - Android 行動裝置平台簡介
 - Android 開發環境安裝與使用
 - Android 程式框架與專案結構
 - 元件佈局(Layout)
 - 視覺化元件
 - 事件處理
 - 其他視覺元件與列表元件
 - 選單與對話視窗
 - 活動(Activity)與意圖(Intent)
 - 廣播接收器
 - 系統應用
 - 多媒體應用
 - 資料儲存
 - 網路服務(Web Service)
- 物聯網技術實務 (30小時)
 - Arduino 操作環境與使用
 - Arduino 開發環境介紹
 - 認識電子零件特性,認識電阻、LED、麵包板等。
 - 程式基礎練習
 - 微控制器系統開發工具與流程
 - I/O實驗:LED基本控制
 - 蜂鳴器發聲,音樂合成控制
 - 馬達變數控制
 - 時脈、電源、步進馬達
 - 超音波
 - 藍芽控制

陳桂芬老師 何健鵬老師

何健鵬老師 陳桂芬老師

	▲ 十動塘八长岛東敦 (20小吋)	≠ 1/ ±+ +/ f∓
	● 大數據分析與實務 (30小時)	蕭水樹老師
	- NumPy套件	何健鵬老師
	- Data Manipulation with Pandas 套件	蘇釗民老師
	- Visualization with Matplotlib 套件	陳桂芬老師
	— Scikit-Learn 套件	
	– Python 與 Firebase	
	- Python 與 MySQL資料庫	
	- OCR 辨識實作	
	- Python 網頁爬蟲實作	
	● AIOT雲端與人工智慧技術實務 (30小時)	楊仁魁老師
	- Google Colab 雲端開發環境	
	– Colab 雲端虛擬主機的管理與設定	
	- Colab 的目錄窗格與檔案管理	
	- 函數式 API 的建模方式	
	- Word2vec 神經網路	
	– LeNet	
	– AlexNet	
	– 實驗:梯度消失 (Vanishing gradient)	
	– VGG	
	 Network in Network (NiN) 	
	GoogLeNet : Inception-V1	
	– Inception-V2 · V3	
	● 物聯網整合專題製作(避障車、循跡車、機器人)(54小時)	何健鵬老師
	- MQTT 通訊協定實作	陳桂芬老師
	- Modbus 通訊協定實作	
	- IFTTT 網路整合服務平台實作	
	- 避障車、循跡車專題實作	
	- 機器人專題實作	
	● 專題實作作品發表與媒合會(6小時)	何健鵬老師
其他	- 專題實作與作品發表	蕭水樹老師
		謝文雄老師
總時數	330小時	

※主辦單位保留變更課程表的權利,請以活動當天課表為準。

【講師簡介】

何健鵬老師

現任:亞東科技大學通訊工程系副教授兼圖書資訊中心校務系統組組長

學歷:國立交通大學 資訊科學與工程研究所 博士

經歷:工業技術研究院資訊與通訊研究所 工程師/智權代表/專利委員/科專計畫主持人/國際專案主持人、台灣積體電路製造股份有限公司 資深工程師、台南應用科技大學計算機中心講師/系統分析師、聯陽半導體股份有限公司(聯電集團) 高級軟體工程師、國立台灣大學嚴慶齡工業研究中心 工程師

專長:多媒體通訊技術、多旋翼無人機、行動裝置開發、物聯網應用、嵌入式系統、影音編解碼器

證照: EPCIE 物聯網工程師認證、EPC 物聯網工程師認證

蘇釗民老師

現任:龍華科技大學兼任助理教授

學歷:國立交通大學 資訊科學與工程研究所 博士經歷: 敏實科技大學工業工程與管理系 助理教授

專長:微積分、工程數學、網頁設計、程式設計、神經網路、無線隨機與感測網路、EPC 認證

物聯網專家、企業電子化資料分析師、供應鏈管理專業認證、PMP

楊仁魁老師

現任: 工研院講師

學歷:國立交通大學 資訊科學研究所 碩士

經歷:華茵科技有限公司負責人、工業技術研究院副組長/技術經理/工程師、松翰科技副理、旺

玖科技主任

專長:嵌入式系統軟體開發、影音串流、影音壓縮、影像處理、數位訊號處理、手機 App 軟體

開發

徐志偉老師

現任:工研院資訊與通訊研究所 資深工程師

學歷:國立中正大學 電機工程系 博士

專長:車載資通訊系統、DSRC技術標準、車聯網 V2X 應用設計與建置

彭永新老師

現任:財團法人中華民國商品條碼策進會服務處處長

學歷:國立交通大學 管理學院 碩士

經歷: 財團法人中華民國商品條碼策進會、華邦電子股份有限公司

專長:物聯網、EPC 標準、國際條碼標準、RFID 概論、供應鏈管理、醫療器材 UDI 法規及標準

魏岑峰老師

現任:廣岦科技有限公司 總經理

經歷:光括科技(股)公司、精業(股)公司、廣岦科技有限公司

專長: 雷射印表機控制主機板及介面卡設計(Motorola MC68000)、軍用射控電腦系統整合、

IP68 防水電腦螢幕設計、微處理器數位電路硬體,韌體設計

蕭水樹老師

現任:亞東紀念醫院工務處組長

學歷:淡汀大學 水資源及環境工程學系 碩十

經歷:亞東醫院總務處採購員、醫學工程處組長、工務處組長

專長:水汙染及室內空氣品質自動監測系統分析整合應用、環境工程與管理應用、物聯網應用、

大數據分析概論

陳桂芬老師

現任:智達軟體設計有限公司 負責人

學歷:國立交通大學 資訊管理研究所 碩士

經歷:研華科技軟體工程師、上海智贏健康科技研發部經理

專長:資訊軟體服務、系統建置服務、資訊處理服務、Unity、商用雲端APP、ERP

謝文雄老師

現任:工研院服務系統科技中心計畫組長

學歷:國立清華大學工業工程研究所 碩士

經歷:工業技術研究院副工程師、工程師、正管理師、營運計畫PM、課長、專案經理、部門

經理、副組長、副總監、總監。連碁科技總經理室特別助理、計畫管理及股務室經理。

美商聯特利電子營運管理處協理

專長:領導管理、專案管理、人力資源管理

【開課資訊】

■ 主辦單位:財團法人工業技術研究院

■ 協辦單位:亞東科技大學通訊工程系

訓練領域:數位資訊

訓練職類:電子及電子通訊工程

■ 課程時數:330小時

■ 課程時間:111年11月1日~112年1月16日(週一至週五)

■ **上課時間:**上午09:00~下午16:00,共計330小時(原則上中午休息時間12:00~13:00)

■ **上課地點**:亞東科技大學(新北市板橋區四川路二段58號)

■ 訓練費用:79,000元(符合「產業新尖兵試辦計畫」補助資格者,勞動部補助上限 10 萬元)「產業新尖兵試辦計畫」官方網站網址: https://elite.taiwanjobs.gov.tw/

■ 招生名額:40名,依報名及繳費完成之順序額滿為止(政府補助30名、自費10名)

■ 報名方式:

- (1)申請參加產業新尖兵試辦計畫前,應登錄為「台灣就業通」會員(電子郵件將作為後續訊息發布通知重要管道,請務必確實填寫),並完成「我喜歡做的事」職涯興趣探索測驗 (https://exam1.taiwanjobs.gov.tw/Interest/Index)。
- (2)確認資格:於產業新尖兵試辦計畫專區(https://elite.taiwanjobs.gov.tw/)下載或列印「報名及參訓資格切結書」,閱覽切結書及相關須知,後加以簽名或蓋章,並交予訓練單位。
- (3) 繳交身分證影本。
- (4) 與課程訓練單位簽訂訓練契約。
- (5)取得課程訓練單位錄訓資格後,可享本課程全額免費參訓,培訓期間享勞保(訓)。
- (6)課程資訊網址:https://reurl.cc/j1El7D
- **甄選方式:**學員甄選方式分為二階段,第一階段為筆試、第二階段為口試
 - (1)筆試,規劃方式:以線上方式進行,採用Google表單,瞭解學員參訓前基本程度,60分以上者合格。
 - (2)口試:規劃方式:以線上方式進行,採用Webex線上會議室軟體,進行口試甄選作業,預計每名學員口試10分鐘,每個時段1名學員一對一進行。
- **請假規定:**有請假需求者,請事前主動告知,並依規定填寫請假單。請假單位以1小時計算,未滿1小時則以1小時計算。未依規定辦理請假者,均以曠課論。
- 結訓證書:發給要件包括:出席率達90%以上、EPCIE物聯網工程師認證考試70分以上、專題實作作品60分以上,頒發工研院結訓證書。
 - (1) 到課時數符合規定:出席率達90%以上者。
 - (2) 成績評量符合規定: EPCIE物聯網工程師認證考試70分以上者(發證單位: GS1商品條碼策進會)
 - (3)完成指定專案:專題實作作品60分以上者合格。
- **就業媒合規劃:**包括「職涯規劃」、「求職密技」、「辦理就業媒合活動」
 - (1)提供學員個別求職輔導,規劃方式為:安排「職涯規劃」、「求職密技」共12小時,協助

學員完成自己的履歷自傳,並一對一進行履歷健檢,強化個人履歷自傳準備。

- (2) 提供學員團體求職輔導,規劃方式為:安排「職涯規劃」、「求職密技」共12小時,協助學員瞭解面試前準備、面試過程、遠距面試等。
- (3) 辦理就業媒合活動,規劃方式為:預計邀請有徵才需求廠商與學員進行面談。

■ 補助費用

- (1) 青年參加指定訓練課程,由勞動部勞動力發展署所屬分署依訓練單位辦理訓練收費標準, 每人最高以補助 10 萬元為上限。
- (2) 青年如後續經審核資格不符,應自行負擔相關訓練費用。
- (3) 青年報名本計畫指定訓練課程,由勞動部勞動力發展署所屬分署依訓練單位辦理訓練收費標準,先行墊付訓練費用,如後續經審核資格不符,由青年自行負擔相關訓練費用。
- (4) 青年應與訓練單位簽訂訓練契約。

■ 注意事項

- (1)以參訓一班次為限,且參訓時數應達總課程時數三分之二以上,未達三分之二將列入黑名單,一年內不得參加職前訓練。
- (2) 青年參加本署與所屬各分署及各直轄市、縣(市)政府依失業者職業訓練實施基準辦理之職 前訓練,於結訓後180日內者,不得參加本計畫。
- (3)參加本計畫指定訓練課程之青年,以失業者為限;其訓練期間不得為日間部在學學生,不 得具勞工保險(短期打工投勞保亦不可)、就業保險身分,不得為營利事業登記負責人。
- (4) 為確保您的上課權益,報名後若未收到任何回覆,請來電洽詢方完成報名。
- (5)如需取消報名,請於開課前3日以書面傳真至主辦單位並電話確認,請於開課前7日以 email通知主辦單位聯絡人並電話確認。
- (6)為尊重講師之智慧財產權益,恕無法提供課程講義電子檔。
- (7) 為配合講師時間或臨時突發事件,主辦單位有調整日期或更換講師之權利。
- (8)若學員因故需中途離訓,請於離訓日前一周發信告知並電話聯繫辦訓單位,以便協助辦理 離訓作業;若出現違規行為(例:無故缺席、訓中加保),將以退訓處理。
- 課程洽詢:02-2370-1111轉316/李小姐